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LETTER TO THE EDITOR 

Similarity solutions of the Kadomtsev-Petviashvili equation 

Sen-yue Lou 
Physics Department, Ningbo Normal College, Ningbo 31521 1, People's Republic of China 

Received 22 March 1990 

Abstract. Using the direct method introduced by Clarkson and Kruskal (CK)  recently, we 
obtain the similarity reductions of the Kadomtsev-Petviashvili equation ( KPE). Some of 
them possess the same Painlevt properties as that of the Boussinesq equation (BE) obtained 
by CK. However, the similarity solutions of K P E  may include some (more than three) 
arbitrary functions of time. There exist some other types of similarity reductions of the 
KPE different from the similarity reductions of the BE obtained by CK. 

The standard method for finding similarity reductions of a given partial differential 
equation (PDE) is to use the method [l]  (and/or the non-classical method [ 2 ] )  of 
group-invariant solutions, which often involves a large amount of tedious algebra and 
auxiliary calculations. Recently, Clarkson and Kruskal (CK)  presented a direct and 
simple method for the Boussinesq equation ( B E )  and other (1  + 1)-dimensional PDES 

[3]. In this letter, we apply the C K  method to a ( 2 +  1)-dimensional model equation, 
the Kadomtsev-Petviashvili equation ( KPE) [4] 

(1) 2 - U,, + 6242, + ~uu,, + U,,, + y U,,,,, = 0 

where y is constant and subscripts denote differentiation. 
Using the one-dimensional subalgebras of the infinite-dimensional Lie algebra of 

the KPE, David et a1 had reduced the KPE to some PDES in two variables [ 5 ] ;  they are 
the BE, a once-differentiated Korteweg-de Vries equation (KdvE) and a linear equation. 
Here we would like to reduce the KPE to some ordinary differential equations (ODES) 

by using CK'S simple but powerful direct method rather than the classical Lie approach 
or non-classical symmetry reduction method. 

All the similarity solutions of the form 

u(x, Y ,  t )  = U(X,  Y ,  t, w ( z ) )  z = 4 x 9  Y ,  t )  ( 2 )  

where U and z are functions of the indicated variables and w ( z )  satisfies an ODE, may 
be obtained by substituting (2) into (1). However, as C K  did for the BE, we can prove 
that it is also sufficient to seek a similarity reduction of the KPE in the special form 

u(x, Y ,  1) = Y ,  t ) + P ( x ,  Y ,  t ) w ( z ( x ,  Y ,  t ) )  ( 3 )  

rather than the most general form ( 2 ) .  
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Substituting ( 3 )  into ( 1 )  yields 

pz: w’“’ + (4P,zt + 6z’,pz,,) w”’ 

+ (-Pz,z, + 6 a p z ;  + 6p,,z: + 12p,z,z,, +4PzXz,,, + 3pz;, + y ’ p z ; )  W” 

+ ( -p Iz ,  - Prz, - Pz,, + 1 2 ~ ~ , / 3 ~ ,  + 12ap,zX + ~ Q P z , ,  

+4Pxx,zx +6Pxxz,x4P,zxr, +Pzxx.xr + 2 ~ ’ P j z j  + ~ ~ P z v j ) w “  

+ ( - P , , +  12a,P,+6ap,,+6pa,,+P,,,, + Y’P,, ) w + ~ P ’ z ? ( w ’ ) ~  

+6p2z;ww”+ (6p~+6pp, , )w2+(24p/3 ,zx  +6p’zx,)ww’ 

+ ( -a,, + 6 a f  + 6aa,, + LY,,,, + y 2 a V ,  ) = 0 ( 4 )  

where primes are z derivatives. Equation ( 1 )  is an ODE of w ( z )  only for the ratios of 
coefficients of different derivatives and powers of w ( z )  being functions of z. We use 
the coefficient of w”” (i.e. pz: )  as the normalising coefficient and therefore we have: 

Remark. There are three freedoms in the determination of a, p, z and w C K  exploited: 
(i) if a ( x ,  y ,  t )  has the form a = a,(x, y ,  t )  + p ( x ,  y,  t)SZ(z), then one can take SZ = 0; 
( i i )  if p ( x ,  y,  t )  has the form p = po(x, y,  t)SZ(z), then one can take SZ = constant; and 
(iii) if z ( x ,  y, t )  is determined by SZ(z) = z,(x, y, t ) ,  where SZ(z) is any invertible 

By using the remark, similar to CK’S discussions for BE, we get the general solution 
function, then one can take n ( z )  = z. 

O f  ( 5 ) - (  1 2 ) :  

T , ( z ) = 6  ( 1 3 )  

r2(4 = r y Z )  = r 7 ( 4  = r,(z) = o (14)  

r , ( z )  = AZ + B ( 1 5 )  

r5( z )  = 2 A  ( 1 6 )  

re (  Z )  = - $[ A Z  + B]’ ( 1 7 )  
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and 

(20) 
1 

6 0- 
=---;[xo,o+oa,- yul- y2(x2e:+a:+2~o,a, . ) ]  

where A and B are arbitrary constants, 0 and a are only the functions of y and t 
which are determined by 

and 

- e, + y2ay, ,  .. = ( A ~ +  ~ 1 0 ~ .  

w’”’+6( w ’ ~ +  ww”) + (Az+ B ) w ’ +  2Aw = ~ ( A z  + B)’ 

(22) 

Substituting (13)-( 18) into (4) leads to 

(23) 

which is exactly same as that of CK’S reduction equation for the B E  after replacing 
6w by w,. This fact coincides with the fact that the K P E  can be reduced to the B E  by 
the classical Lie approach [5]. CK’S discussions of the PainlevC property for the BE are 
valid here, i.e. (23) is equivalent to the fourth PainlevC equation; but, when A = 0 ,  it 
is equivalent to the second Painlev6,equation and, when B = 0 also, it is equivalent to 
either the first Painlevt equation or the Weierstrass elliptic function equation. Neverthe- 
less, all the differences between the B E  and the K P E  appear in the constraints (20)-(22). 
Generally, four arbitrary functions of time t will be included in such types of the 
similarity solutions of the KPE because of equations (21) and (22) being PDES. 

Some special cases are listed here. 

Case 1. A = 0, B = 0. In this case, the general solutions of (21) and (22) are 

1 
a ( y ,  t ) = - - [ l a  ( t ) v ’ + t ~ o , ( t ) y ’ ] + b , ( t ) y + b , ( t )  (24) 

Y 2  I 1  
O(Y, t )  = a , ( t ) y  +ao(t) 

and the similiarity reduction of the K P E  is 

and 

w “ + 3 w 2 =  c ,z+co  ( 2 5 c )  

where c, and co are arbitrary constants while a , ,  a,, b,  and bo are all arbitrary functions 
of t. The travelling wave reduction arises as the special case of (25) when a,, = b,, = bo, = 
a, = 0. 



L652 letter to the Editor 

Case 2. A = 0, B # 0. In this case, the general solution of (21) and (22) reads 

8 = a , y +  U,  (26) 

+ i ( a ; a ,  + a , , / B ) y 3  +:(a:+ a o , / B ) y 2 +  b,y + bo]. (27) 

The similarity reduction of the K P E  may be obtained by substituting (26) and (27) into 
(3), (18)-(20) and w ( z )  satisfies 

w ’ “ + ~ w w ’ +  Bw = i B 2 z  + C ,  (28) 

where c, is a constant while a , ,  a,, b, and bo are again all arbitrary functions of t.  

Case 3a. A # 0. In this case we can always set B = 0 in (22) (by substituting r ~ +  (+ - 
B / A ) .  Integrating (21) twice gives 

where a , ( t )  and a,(t)  are still arbitrary functions of t. 

Case 3b. a , (  t )  = 0. Equation (29) becomes 

and the general solution of (22) is 

with b,( t )  and bo( t )  being arbitrary functions of t. The corresponding similarity 
reduction can be obtained by substituting (30) and (31) into (3), (18)-(20). 

Case 3c. a , ( t ) # O .  In this case, (29) can be expressed explicitly in terms of some 
Jacobian elliptic functions. CK had given an example with a,  and a, being constants 
and the parameters a,  and A/ y’ being complex, a ,  = k2 = i( 1 +i&) and A/ y2 = 
( k2+  1)/(3k2), here we give some examples with real parameters or arbitrary functions 
of t. 

(i) A < 0 ,  a ,  and U,  are any functions of t :  

6 - 2 =  (1-k)’ (%)’I3 

2( 1 + 6 k +  k2)  y2a,  
-9a’A 

2d2  ( y + a , ( t ) ) ;  k’] + ( + ) I ”  (32a) 
X4’[(1+6k+k2)”’ (*) 3Y a,  

where is 

(1 - k)’/* dn(x; k2) 
4 , (x;  k’) = (1+ k)”’( l+ksn(x;  k2))+[2k(l+sn(x;  k z ) ) ( l +  ksn(x;  k2))]1/2‘ (326) 
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(ii) A > 0, a, and a. are arbitrary functions of t :  

0-2 = ( 1 + k ’ ) 2  (””)’I3 

2( 1 + k ” - 6 k ’ )  y2a ,  

(1  + k ’ )  sn(x; k 2 )  
[2(cn2(x; k’)+dn(x; k 2 ) +  k’ sn2(x; k 2 ) ) ] ’ l 2 ’  

42(x; k 2 )  = 

The modulus k in (32) and/or the negative complementary modulus -k’  in ( 3 3 )  is a 
solution of the quartic equation 

x4+60x3  + 134x2+60x + 1 = 0. (34a )  

One real solution of (34a )  is 

x 3 -0.017 332 38. 

The proofs of (32)-(34) may be obtained directly by the transformation 
(346)  

where g50(yl) is a solution of the 44 model 

4;,, = ~ 0 4 ; + f A o 4 ; + 3 u ; / A o  
which possess various known special solutions such as 4, and b2 [ 6 ] .  

equation (22)  after substituting (32) or ( 3 3 )  into it. 

for BE) are valid only for z, # 0. When z, = 0, ( 4 )  becomes 

The correspondent function U can be obtained by solving a linear differential 

Finally, it is necessary to point out that all the discussions above (and CK’S results 

y 2 p z : w ” + ~ - p x z , + 2 y 2 P y z , ) ~ ‘ + ~ - P L x  + ~ ~ ~ X P X + ~ ~ P X ~ + ~ P ~ , X + P , X X X  

+ y2PyY)w + (6P: + 6PPXx)w2 - alx + 6a :  + baa,, + a,,,, 
+ y2a,, = 0. ( 3 5 )  

There are two possibilities for ( 3 5 )  being an ODE of w(z ) .  

Case I .  zy # 0. In this case, the constraint conditions are 

- P ~ z , + ~ Y ~ P , z ,  + y2pzV, = Y2pz:r , (z)  (36) 

- P , ~ + ~ ~ ~ , P , + ~ ~ P , ~ + ~ P ~ , , + P , , ~ , +  y2pJV = Y 2 p Z : r b w  (37) 

6Pf,+6PPXX = r ’Pzf , r , (z)  (38) 

- ~ y , ~ + 6 ( ~ : + 6 a a , , +  axrxx+ y’a,, = y2pz : r , ( z )  (39)  
where r,, rb ,  r, and r, are some functions of z. 

Case IZ. zy = 0. In this case, one can simply take z = f ,  the constraints read 

-&+ 1 2 a x ~ x + 6 a ~ x x + 6 ~ a x x  - P ~ ~ ~ ~ + Y ~ P ~ ~  = -PxrA(t) 
~ P : + ~ P P , ,  = - P x w )  (41 1 

(40) 

- a , x + 6 a ~ + 6 a a x x + a , x x x + y  2 ayy=-Pxr,(t) 
with r A ,  Ts and r, being the undetermined functions of t. 
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It is clear that there exist many solutions to (36)-(39) and (40)-(42) which lead 
to some new similarity reductions of the KPE different from (23). Here is a special 
example: 

r, =r,  = o  rd = - rh  = 1 (43) 

z = $ ~ n ( y + y , ( t ) )  (44) 

P = b"( t ) (Y  +Y")1'2 (45) 

and w ( z )  is easy to get by solving 
w"+ w + 1 = 0. 

This is a new similarity reduction beyond (23). 
In summary, we can reduce the K P E  to some types of ODES. Various arbitrary 

functions of t (more than three) have been included in our results. Generally, as C K  

pointed out, such types of reduction cannot be obtained by the classical Lie approach; 
however, for the first type of reduction (i.e. (23)), one can get it from combining the 
classical Lie approach and the non-classical symmetry reduction method. At first one 
can use the Lie approach to reduce the KPE to the B E  [5], and then use the non-classical 
symmetry reduction method to reduce the B E  to the ODE (23) [7]. The concrete forms 
of a, p and z obtained by this method may be different from our results but they are 
equivalent. 

How to get all the solutions of (36)-(39) and (40)-(42), and whether there is any 
connection between these two types of reduction and the classical Lie approach or 
the non-classical symmetry reduction method, will be carefully discussed elsewhere. 

This work was supported by the National Natural Science Foundation of China. The 
author would like to thank Professor Guang-jiong Ni for helpful discussions. 
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